Epoxy/Polycaprolactone Systems with Triple-Shape Memory Effect: Electrospun Nanoweb with and without Graphene Versus Co-Continuous Morphology
نویسندگان
چکیده
Triple-shape memory epoxy (EP)/polycaprolactone (PCL) systems (PCL content: 23 wt %) with different structures (PCL nanoweb embedded in EP matrix and EP/PCL with co-continuous phase structure) were produced. To set the two temporary shapes, the glass transition temperature (Tg) of the EP and the melting temperature (Tm) of PCL served during the shape memory cycle. An attempt was made to reinforce the PCL nanoweb by graphene nanoplatelets prior to infiltrating the nanoweb with EP through vacuum assisted resin transfer molding. Morphology was analyzed by scanning electron microscopy and Raman spectrometry. Triple-shape memory characteristics were determined by dynamic mechanical analysis in tension mode. Graphene was supposed to act also as spacer between the nanofibers, improving the quality of impregnation with EP. The EP phase related shape memory properties were similar for all systems, while those belonging to PCL phase depended on the structure. Shape fixity of PCL was better without than with graphene reinforcement. The best shape memory performance was shown by the EP/PCL with co-continuous structure. Based on Raman spectrometry results, the characteristic dimension of the related co-continuous network was below 900 nm.
منابع مشابه
Compression Analysis of Hollow Cylinder Basalt Continuous Filament Epoxy Composite Filled with Shape Memory Wire
This paper presents an experimental investigation into the compression behavior of shape memory alloy hybrid composites (SMAHC) subjected to quasi-static loading taking into account of rotation effects of shape memory wire in basalt continuous filament (BCF) direct roving epoxy composite. Two types of specimen prepared, the BCF direct roving reinforced epoxy composite filled with shape memory w...
متن کاملTwo-dimensional shape memory graphene oxide
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape...
متن کاملThermoelectric Responsive Shape Memory Graphene/Hydro-Epoxy Composites for Actuators
A series of thermoelectric responsive shape memory hydro-epoxy (H-EP) composites filled with different contents of graphene were developed and characterized. Compared with traditional actuation materials, these novel shape memory composites exhibit attractive properties, such as light weight, large deformation, good processability and high response speed, making them good candidates for actuato...
متن کاملDose-dependent effects of gamma irradiation on the materials properties and cell proliferation of electrospun polycaprolactone tissue engineering scaffolds
Electrospun membranes of polycaprolactone are widely used for biomedical applications like wound dressings and tissue engineering scaffolds. It is important to sterilize this material using the most accepted method, the gamma irradiation. In this study, we have evaluated the sterilizability of electrospun polycaprolactone membranes with gamma radiation of varying doses. The irradiated materials...
متن کاملProperties of triple shape memory composites prepared via polymerization-induced phase separation.
Research in the field of shape memory polymers has recently witnessed the introduction of increasing complexity of material response, including such phenomena as triple/multishape behavior, temperature memory, and reversible actuation. Ordinarily, such complexity in physical behaviour is achieved through comparable complexity in material composition and synthesis. Seeking to achieve a triple sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2013